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Abstract
The thermodynamic functions of anisotropic phonon systems in superfluid
helium are calculated for all levels of anisotropy. The results show that
the thermodynamic functions of strongly anisotropic phonon systems are
essentially different from isotropic ones. It is shown that for strongly anisotropic
phonon systems, in thermodynamic equilibrium, the energy density of high-
energy phonons, ε/kB � 10 K, is more than ten times higher than in a cone
with the same total energy density and with the Bose–Einstein distribution for an
isotropic system. The stability curve for anisotropic phonon systems is derived
and it is shown that strongly anisotropic phonon systems are thermodynamically
stable over a wide temperature range.

1. Introduction

At low enough temperatures, He II can be considered as a gas of phonons moving in the
superfluid component of the liquid helium. When there is complete equilibrium, the phonon gas
is isotropic in the frame of the superfluid component. For such a phonon gas there is no special
direction as all directions are equivalent. When a weak heat flux or propagation of sound is
present, the phonon system becomes weakly anisotropic. Such isotropic and weakly anisotropic
phonon systems in superfluid 4He have been studied for many years. However, in superfluid
helium it is possible to create quasiparticle systems which are strongly anisotropic [1], where
most of phonons move in one direction. The thermodynamical properties of such strongly
anisotropic phonon systems have not been considered until this present paper. We will see that
strongly anisotropic phonon systems are qualitatively and quantitatively different to isotropic
ones. For example two groups of phonons emerge instead of one, and the energy density is
much larger, at the same temperature, in anisotropic phonon systems.

A strongly anisotropic phonon system can be created by a short current pulse in a heater
which is immersed in superfluid helium. If the helium is at a sufficiently low temperature
(T � 50 mK), then the thermal excitations of helium can be neglected, and the phonon pulse
moves in a phonon vacuum. The phonon pulse has a net momentum along the direction normal
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to the heater; this defines the anisotropy axis, and in momentum space, the distribution of
occupied states is strongly anisotropic. The transverse dimensions of the phonon pulse are
about those of the heater, when it is near the heater (i.e. typically 1 mm × 1 mm). The
longitudinal dimension is ctp, where c is the velocity of sound and tp is the duration of the
heater pulse.

If the relaxation time of this system is much less than the shortest time for the properties of
the system to change significantly, then it can be in a quasi-thermodynamic equilibrium. This
can be described by an equilibrium distribution function with a well defined temperature T and
drift velocity u [2]. This is the reason we can use the ideas of equilibrium thermodynamics to
analyse the properties of strongly anisotropic systems, derive their thermodynamic functions
and find quantities such as the energy density and the normal fluid density in the pulse.

One important question we address is, what is the range of stability of strongly anisotropic
systems? The more anisotropic the phonon system is, the faster it travels: the velocity can
closely approach the velocity of sound. We show that such systems are stable and do not break
up into turbulence.

The pulse is predominantly composed of low energy phonons, l-phonons. The loss of
energy from the phonon pulse is due to the creation of high energy phonons, h-phonons, which
are subsequently lost from a short pulse because their group velocity is less than that of the
pulse. Their energy ε � 10 K. As the pulse length is increased, the h-phonons stay longer
in the pulse and come into equilibrium with the l-phonons. The density of h-phonons then
is independent of the pulse length. This behaviour is seen experimentally [3]: the number of
detected h-phonons increases with pulse length when all the created h-phonons are lost from the
pulse without scattering, but the number saturates when the h-phonons are scattered so that they
stay within the pulse. We have argued that the h-phonon density is much higher than in a cone,
with the same total energy density and a Bose–Einstein distribution for an isotropic system, on
dynamical grounds [4]. We shall see that this result can also be derived thermodynamically.

The evolution of such a phonon system is determined by its spatial size, energy and
momentum densities and by the phonon dispersion curve. The dispersion curve initially rises
faster than linearly [5, 6], which means that the phonons can interact by the three phonon
process (3pp) [7]. Such interactions establish a phonon equilibrium, which is instantaneous
on the scale of all the other times in the experiments. However, for phonons with momentum
p > pc (h-phonons), the dispersion curve falls below a linear relation and so the fastest process
is the four phonon process (4pp). This is about two orders of magnitude slower than 3pp, in
strongly anisotropic systems.

Hence the phonon system can be divided into two subsystems: l-phonons and h-phonons.
The h-phonons only weakly interact with the l-phonons. Furthermore, for sufficiently short
pulses the h-phonons are lost from the main l-phonon pulse without any interaction. The
creation and evolution of h-phonons in short pulses was investigated in [8, 9]. In contrast, for
the long pulses, the h-phonons are in dynamic equilibrium with the subsystem of l-phonons.
In practice the h-phonon spectrum has a maximum momentum p f and all the phonons with
p < p f are in quasi-equilibrium. This is determined by their creation rate, which strongly
decreases with momentum, and the duration of the pulse, and scattering within the pulse.

The main aim of this paper is to calculate the thermodynamic functions of phonon systems,
with any level of anisotropy, which are in equilibrium for phonon momenta up to p f . An
expression for the free energy of an anisotropic phonon system is obtained, and this enables
us to calculate the thermodynamic functions of this system. These results show that strongly
anisotropic phonon systems are essentially different from isotropic ones. The stability region
for the phonon system is derived from general thermodynamic inequalities, and we show that
strongly anisotropic phonon systems are stable over a wide temperature range.
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The results presented here are not only interesting for describing phonon pulses in He II,
but should be applicable to other anisotropic quasiparticle systems, in particular for phonon
pulses in solids.

2. Distribution functions of anisotropic phonon systems

Consider an equilibrium anisotropic phonon system that includes phonons with momentum
up to p f . Unlike isotropic systems, the total momentum density j0 is not equal to zero. The
distribution function for such an anisotropic phonon system, which makes the phonon–phonon
collision integrals equal to zero, is the Bose–Einstein distribution with a drift velocity u that is
parallel to j0:

n(p) =
[

exp

(
ε(p)− p · u

kBT

)
− 1

]−1

(1)

where ε(p) is the energy–momentum relation for phonons in superfluid helium. The pulse
velocity can be calculated from u and T [10].

The energy–momentum relation can be written as

ε(p) = cp(1 + ψ(p)), (2)

where c = 238 m s−1 is the velocity of sound in helium, and the function ψ(p), which
describes the deviation from linearity, is small (|ψ(p)| � 1). Nevertheless it completely
determines the type and strength of phonon interactions. According to [6], at low pressure, the
function ψ(p) is positive for phonons with momentum 0 < p < pc, where cpc/kB = 10 K
at zero pressure. This is the momentum range of the l-phonons where the scattering is very
fast. For small p the function ψ(p) ∼ p2. At cp/kB ≈ 7 K the function ψ(p) reaches its
maximum value ≈0.04. After that the function ψ(p) decreases and becomes zero at p = pc.
For p > pc, the momentum range for h-phonons, ψ(p) is negative, so 3pp is prohibited by the
conservation laws. In this case the fastest scattering is 4pp. An analytical approximation of the
function ψ(p) is given below (see equation (6)).

The distribution function can be rewritten using equations (1) and (2) as

n(p, ζ ) =
[

exp

(
cp

kBT
(χ + ψ(p)+ ζ(1 − χ))

)
− 1

]−1

, (3)

where ζ = 1 − cos θ , θ is the angle between momentum p and the direction of u, and
χ = 1 − u/c.

Until recently there only existed a theory of weakly anisotropic phonon systems, which
assumed that u � c (see, for example, [11]). That theory cannot describe strongly
anisotropic phonon systems, in which χ � 1, which are created in pulse experiments (see,
for example, [1, 8]). The main aim of this paper is to give a theoretical description of phonon
systems with any level of anisotropy, i.e. when the drift velocity takes all allowed values. For
phonon system with χ � 1 the distribution function (3) is highly anisotropic with a sharp
maximum at ζ = 0 and it has the typical width ζ ≈ χ + ψtyp. Moreover, when χ � |ψ(p)|
the distribution function (3) depends strongly on the function ψ(p).

The anisotropy of a phonon system, with distribution function (3), can be described by a
normalized angular distribution

W (ζ ) =
∫
εn(p,ζ )p2 dp∫ 2

0 dζ
∫
εn(p,ζ )p2 dp

. (4)
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(a) (b)

(c) (d)

Figure 1. ((a) and (b)) The momentum dependence of the phonon energy distribution of strongly
anisotropic phonon systems (solid lines), for cp f /kB = 10 K (χ = 0.02 and T = 0.041 K), and
cp f /kB = 11 K (χ = 0.042 and T = 0.054 K), respectively. The dashed curves show the phonon
energy distribution in a Bose cone (ζp = 0.023 and Tp = 1 K). All distributions have the same
energy and momentum densities. (c) and (d) show the normalized angular dependences of phonons
calculated by equation (4). (c) shows the angular distribution W0−8(ζ ) of phonons, which form the
first maximum in (a), where 0 < cp/kB < 8 K, and the angular distribution W8−10(ζ ) of phonons
from the second maximum in (a), where 8 < cp/kB < 10 K, where for both cp f /kB = 10 K. (d)
shows the angular distribution W0−10(ζ ) of phonons, which form the first maximum in (b), where
0 < cp/kB < 10 K, and the angular distribution W10−11(ζ ) of phonons which form the second
maximum in (b), for 10 < cp/kB < 11 K, where for both cp f /kB = 11 K.

The momentum dependence of the energy distribution function is∫ 2

0
εn(p, ζ )p2 dζ = −kBT pε

u

{
ln

[
1 − exp

(
−ε(p)− pu

kBT

)]

− ln

[
1 − exp

(
−ε(p)+ pu

kBT

)]}
. (5)

The energy distribution function, equation (5), is shown in figures 1(a) and (b) for the l-phonon
system with cp f /kB = 10 K, and for the (l + h)-phonon system with cp f /kB = 11 K,
respectively.

The value of cp f /kB cannot be determined exactly but a number of arguments lead to the
conclusion that it is up to 10 K for short pulses and around 11 K for long pulses. For short
pulses, h-phonons are lost from the pulse in less than ∼5 × tp because their group velocity
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is less than that of the l-phonons (�189 and 238 m s−1 respectively). So for short pulses the
h-phonons are lost from the back of the pulse before they come into equilibrium with the pulse.

Phonons with energy ε/kB � 8.9 K [12] can interact, essentially instantaneously, by 3pp.
There is some uncertainty in the value of this energy as it is sensitive to the exact form of ψ(p)
obtained from neutron scattering. Between ε/kB = 8.9 and 10 K, 3pp are forbidden. A phonon
in this energy range can decay into three or more phonons and similarly can be created from
many phonons. The rates for such processes have not been calculated, but experiment [13]
shows that the rate is less than the 3pp rate but higher than the 4pp rate. So for a short pulse,
the h-phonons are not in equilibrium with the l-phonons because the h-phonons are lost from
the pulse before they can interact with the l-phonons. However the l-phonons rapidly mutually
interact up to ε/kB = 10 K, so for this case we take cp f /kB = 10 K.

For a long pulse, there is time for the h-phonons to be in equilibrium with the l-phonons
so p f is higher than 10 K. Calculations of the creation rate of h-phonons show that the rate
falls very quickly with increasing momentum; the rate for cp/kB = 11 K is ∼10−2 of the rate
for cp/kB = 10 K, and the rate for cp/kB = 12 K is ∼10−4 of the rate for cp/kB = 10 K.
As the rate rapidly decreases with momentum, we expect that cp f /kB is in the range 10–11 K.
Measurements of the h-phonon pulse shapes indicate that for longer pulses, up to 350 ns, while
most h-phonons have energy cp/kB ∼ 10 K there are phonons with cp/kB ∼ 11 K, [3]. In this
paper we take cp f /kB = 11 K for long pulses, as a reasonable value for numerical calculations;
however, the equations are correct for all values of p f .

In figure 1 we use the following values: χ = 0.020, T = 0.041 K at cp f /kB = 10 K
for figures 1(a), (c), solid line; and χ = 0.042, T = 0.054 K for cp f /kB = 11 K
for figures 1(b), (d), solid line. These pairs of values of χ and T for cp f /kB = 10 K
and cp f /kB = 11 K give the same values for the energy and momentum densities in the
pulse. In the Bose-cone approximation, the numerical values χ = 0.020, T = 0.041 K at
cp f /kB = 10 K correspond to ζp = 0.023 and Tp = 1 K, which are typical for experimental
conditions [14], and are shown as dashed lines in figures 1(a) and (b). The values of the energy
and momentum densities are the same as above, and correspond to a cone, with a solid angle
of �p = 2πζp, cut from an isotropic Bose–Einstein distribution with temperature Tp. This
Bose-cone approximation of the distribution function was used in previous analysis (see, for
example, [15]).

For figure 1 and below we use the following parameterization for the functionψ(p) at zero
pressure, found by fitting to measured data [16]:

ψ(p < p1) = γ
p2

p2
c

(
1 − σ

p2

p2
c

)
,

ψ(p > p1) = − p − pc

p

[
c − ch

c
− α

2kB
(p − pc)

]
,

(6)

where the parameters are γ = 0.181, σ = 1.13, cp1/kB = 8.26 K, ch = 189 m s−1 is the
group velocity of the phonon with cpc/kB = 10 K and α = −19.8 m s−1 K−1.

Figures 1(a), (b) show the energy distribution function (5) as a solid line. It has two
maxima in contrast to that for the Bose-cone distribution, shown as a dashed line, which has
one maximum at ε ≈ 2.7Tp. The second maximum is due to the function ψ(p) which from
cp/kB >∼ 7 K decreases to zero; from (3) we see that this increases n(p) when χ and ζ are
small. The second maximum indicates that there is a large number of high energy phonons in
a strongly anisotropic phonon system. The possibility of such an unusual distribution was first
discussed in [4], where it was called a ‘suprathermal distribution’.

Figures 1(c) and (d) show the normalized angular dependences, calculated using
equation (4), for phonons that form the first maximum (figure 1(a), 0 < cp/kB < 8 K;
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figure 1(b), 0 < cp/kB < 10 K), and the second maximum (figure 1(a), 8 < cp/kB < 10 K;
figure 1(b), 10 < cp/kB < 11 K). These figures show that the high-energy phonons, which
form the second maximum, have less angular width than those forming the first maximum.
The narrower angular distribution of h-phonons, compared to l-phonons, was observed in
experiments [17].

3. Thermodynamic functions of anisotropic phonon system

The thermodynamic properties of a phonon system can be determined from the free energy
density; see [11]:

F = kBT
∫

ln

[
1 − exp

(
−ε(p)− p · u

kBT

)]
d3 p

(2π h̄)3
. (7)

The integration over angle in equation (7) can be done if the logarithm, in the integral
expression, is expanded in a series and then each term of the series integrated. As the result we
obtain

F = kBT c

8π2h̄3u

∫ p f

0

{(
1 − u

c
+ (pψ(p))′

)
ln

[
1 − exp

(
−ε(p)− pu

kBT

)]

−
(

1 + u

c
+ (pψ(p))′

)
ln

[
1 − exp

(
−ε(p)+ pu

kBT

)]}
p2 dp

− k2
BT 2 p2

f

8π2h̄3u

n=+∞∑
n=1

1

n2

{
exp

(
−ε f − p f u

kBT
n

)
− exp

(
−ε f + p f u

kBT
n

)}
. (8)

For weakly anisotropic systems, when u � c, the upper limit p f in expression (7) can be
changed to infinity and the function ψ(p) can be taken as zero. The integration then gives the
result in [11].

The thermodynamic functions of a phonon gas can be obtained by differentiating the free
energy density F . So, the entropy density S, heat capacity density C , the momentum density
j0, and the density of the normal component ρn are given respectively by

S = −∂F

∂T
, C = −T

∂2 F

∂T 2
, j0 = −∂F

∂u
, ρn = j0

u
. (9)

The signal amplitude on a bolometer due to a phonon pulse is proportional to the
energy density E of the phonon system. The energy density can be written in terms of the
thermodynamic functions by the following relation:

E = F + T S + j0 · u. (10)

However, it is easier to use

E =
∫
εn

d3 p

(2π h̄)3
. (11)

We now expand the distribution function n in equation (11) in a series in powers of
exp(−(ε(p)−pu)/kBT ), and then integrate each term of the series over the ζ . Finally, summing
the resulting series we find

E = − kBT

4π2h̄3u

∫ p f

0
dp pε

{
ln

[
1 − exp

(
−ε(p)− pu

kBT

)]
− ln

[
1 − exp

(
−ε(p)+ pu

kBT

)]}
.

(12)
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For weakly anisotropic phonon systems, when u � c, in the rhs of equation (12), ψ(p) can be
considered equal to zero, and so the upper limit p f can be taken as infinity. Finally, we obtain

E = π2(kBT )4

30h̄3c3

1 + u2/3c2

(1 − u2/c2)3
, ψ(p) = 0. (13)

For strongly anisotropic phonon systems, when χ � 1, one can omit the second term in
the braces in the integral expression equation (12). Then the integral for the energy can be
considered as a sum of two integrals, corresponding to phonons in the first maximum, EI, and
in the second maximum, EII. As the phonons in the region of the first maximum in equation (12)
have low energies, one can use the following quadratic approximation ψ(p) = γ p2/p2

c , and
take the upper limit of integration as infinity. As a result we obtain

EI = (kBT )4

4π2(h̄cχ)3(1 − χ)
I

(
γ k2

BT 2

p2
cc2χ3

)
, (14)

where we use notation

I (x) = −
∫ +∞

0
dy y2 ln[1 − exp(−y − xy3)]. (15)

For the limiting cases x � 1 and x � 1 one can get asymptotic formulae for the
integral (15):

I (x) = π4

45

{
1 − 40π2

7
x

}
, x � 1; (16)

I (x) = π2

18x

{
1 − 2( 1

3 )ζ(
4
3 )

π2 3
√

x

}
, x � 1; (17)

where (1/3) ≈ 2.679 and ζ(4/3) ≈ 3.601.
The first term of the asymptotic expansion equation (16) gives the dependence EI ∼ T 4,

valid for very low temperatures T � 0.006 K when χ = 0.02, i.e.,

EI = π2(kBT )4

180(h̄cχ)3(1 − χ)
. (18)

For the asymptotic equation (17) we obtain a dependence which is close to EI ∼ T 2, which
is valid for higher temperatures, T � 0.18 K when χ = 0.01, i.e.,

EI = p2
c(kBT )2

72h̄3cγ (1 − χ)

{
1 − 2( 1

3 )ζ(
4
3 )(cpc)

2/3χ

π2γ 1/3(kBT )2/3

}
. (19)

For χ = 0.02 the asymptotic equation (19) is formally valid if T � 0.5 K, but for such
values of χ and T , the two maxima of the phonon energy distribution function overlap, so the
approximation which was made when we obtained equation (14) is poor. Nevertheless, the
asymptotic expression (19) is important, because it shows the limiting law for EI, which is
valid for relatively large T and small χ .

To calculate EII, the contribution of the phonons in the second maximum to the energy
density, we note that the integral expression in equation (12) has a sharp maximum at p = p f

caused by the exponential function. This enables us to make several approximations: the slowly
changing function pε can be substituted by cp2

f , the exponent in equation (12), (ε(p) − pu),
can be expressed as a linear function of p at p = p f , and the lower limit of integration can be
taken as −∞. These allows us to get the following result:

EII ≈ p2
f (kBT )2

4π2h̄3c(1 − χ)

1

[−(pψ(p))′|p=p f − χ] exp

{
− cp f

kBT
[χ + ψ(p f )]

}
. (20)
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Figure 2. The ratio of the energy in the strongly anisotropic phonon system with χ = 0.02 to that
in the isotropic phonon system with χ = 1, as a function of temperature.

With typical experimental values, the contribution of EII to the total energy density is
considerably less than that of EI.

For the case of the Bose-cone approximation, the energy density of the h-phonons, noting
that cpc/kBTp � 1, can be written as follows:

E (B.c.)
II ≈ 2πζp(kBTp)

4

(2π h̄c)3

{
e−εc/kB Tp

[(
εc

kBTp

)3

+ 3

(
εc

kBTp

)2]

− e−ε f /kB Tp

[(
ε f

kBTp

)3

+ 3

(
ε f

kBTp

)2]}
. (21)

To compare the energy densities of h-phonons in anisotropic and in Bose-cone systems we
evaluate expressions (20) and (21), at the same value of p f , and we take pairs of χ, T and
ζp, Tp, which correspond to the same energy and momentum densities. So, at cp f /kBT = 11 K,
we take χ = 0.042 and T = 0.054 K, which correspond to the typical experimental values,
ζp = 0.023 and Tp = 1 K. The ratio of energy densities, determined by (20) and (21), at these
values, is equal to

EII

E (B.c.)
II

≈ 33. (22)

The result (22) is close to that obtained in [18] which started from the relation between the rates
of creation and decay of h-phonons in the l-phonon pulse in the Bose-cone approximation.

Figure 2 shows the temperature dependence of the ratio of the total energy in the strongly
anisotropic phonon system with χ = 0.02, and the isotropic phonon system with χ = 1.
Figure 2 shows that the total energy density of the strongly anisotropic phonon system is always
greater than the total energy density of the isotropic phonon system at the same temperature.
The ratio of the total energy densities EI (equation (14)) to E (equation (13) with u = 0)
increases with decreasing temperature and reaches its maximum value 1/(6χ3(1 − χ)) at
T = 0.
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4. The stability of anisotropic phonon systems

According to [19], superfluid motion in He II is thermodynamically stable if the following
equality is satisfied:(

∂P

∂ρ

)
T,u

[
ρ −

(
∂ j0
∂u

)
T,ρ

]
− ρ

[(
∂ j0
∂ρ

)
T,u

− u

]2

> 0, (23)

where P is the pressure of helium.
The inequality (23) can be considered as a generalization of the Landau criterion for finite

temperatures. As it will be shown later, up to temperatures 2 K, the values of the drift velocity u,
on the stability curve, which divides the stable and unstable regions, is very close to c; i.e. such
phonon systems must be considered as strongly anisotropic as χ � 1. After differentiating
equation (8) for the free energy twice with respect to u, and omitting small terms, we get the
approximate relation:

1

ρ

(
∂ j0
∂u

)
T,ρ

≈ 1

4π2h̄3ρc

∫ p f

0

p3 dp

exp( cp
kB T [χ + ψ(p)])− 1

. (24)

The momentum density j0 depends on the helium density ρ, because the phonon spectrum
depends on density:

∂ε

∂ρ
= w

ρ
ε + cp

∂ψ(p)

∂ρ
≈ w

ρ
ε, (25)

where w = (ρ/c)(∂c/∂ρ) = 2.84 is the Gruneisen constant. The experimental data show that
the contribution of the second term can be neglected.

Then we differentiate expression (8) for the free energy with respect to u and with respect
to ρ, and obtain the approximate relation for strongly anisotropic systems:

1

c

(
∂ j0
∂ρ

)
T,u

≈ −w 1

ρ

(
∂ j0
∂u

)
T,ρ

. (26)

Substituting the equalities (24) and (26) into the stability criterion (23), and noting χ � 1, we
find

1

4π2h̄3ρc

∫ p f

0

p3 dp

exp( cp
kBT (χ + ψ(p)))− 1

<
χ

w + 1/2
. (27)

The inequality (27) determines the region of thermodynamic stability of phonon systems; it
is stable when u < ust(T ). Figure 3 shows the dependence of the critical velocity, u = ust(T ),
on temperature when cp f /kB = 10 K and cp f /kB = 11 K, calculated using equation (27). At
T = 0 K, the value of ust coincides with the Landau critical velocity for a phonon system; it
is the condition that the distribution function must be positive for all possible values of phonon
momenta:

χ > max
p∈[0,p f ]

[−ψ(p)] = −ψ(p f ), if cp f /kB � 10 K. (28)

It can be seen from figure 3 that the critical velocity decreases monotonically with
increasing temperature, but remains close to the velocity of sound, c. So, strongly anisotropic
phonon systems are stable thermodynamically in the wide temperature range up to ∼2 K.
Figure 4 shows the temperature dependences of ρn/ρ for the most extreme anisotropic systems,
i.e. on the stability line u = ust(T ) for cp f /kB = 10 K, and for the isotropic case u = 0.

In figure 4 one can see that for strongly anisotropic phonon systems the normal density ρn

can strongly exceed the normal density of the isotropic case, while remaining small compared
to the total density of helium ρ.
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Figure 3. The critical velocity, u = ust(T ), for cp f /kB = 10 K and cp f /kB = 11 K, as a function
of temperature.

Figure 4. The normal fluid density, normalized to the total density, ρn/ρ, for the extremely
anisotropic phonon system on the stability line u = ust(T ) with cp f /kB = 10 K, and for the
isotropic system u = 0, as a function of temperature.

Figure 5 shows the ratio of the total energy density of a strongly anisotropic phonon system
on the stability line u = ust(T ), for cp f /kB = 10 K, to the energy density of the isotropic
phonon system as a function of temperature. At 2 K this ratio is 5.2. We see that for sufficiently
low temperatures, the energy density of a strongly anisotropic phonon system can be many
orders greater than the density of the isotropic system at the same temperature.

5. Conclusion

In this paper we have investigated anisotropic phonon systems, in thermodynamic equilibrium,
that are characterized by the Bose–Einstein distribution function which includes the
temperature T and the drift velocity u (see equation (1)). For strongly anisotropic phonon
systems, the phonon energy distribution function can have two maxima, in contrast to one for
the isotropic case (see figures 1(a), (b)). The second maximum results from the fact that at
p = p f the function ψ(p), which determines the deviation of the energy–momentum relation
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Figure 5. The ratio of the total energy density of an extremely anisotropic phonon system on the
stability line u = ust(T ), with cp f /kB = 10 K, to the energy density of the isotropic phonon
system u = 0, as a function of temperature.

from a linear dependence, reaches its minimum value. Phonons that form the second maximum
have momentum close to the maximum momentum p f , and their angular width is much less
than the angular width of the phonons which form the first maximum (see figures 1(c), (d)).
This is in agreement with experimental results [14].

An expression for the free energy of the anisotropic phonon system is found (8) which
allows all the thermodynamic functions of the system to be calculated (9). In the limiting case of
a weakly anisotropic phonon system, when u � c, the equations give the well-known relations
from [11]. For strongly anisotropic systems we obtain new results. In particular, it was shown
that the energy density of strongly anisotropic phonon systems at low T increases as T 4 (18),
and for higher temperatures it increases more slowly, as T 2 (19), but only if the contribution of
the second maximum (20) is less than that of the first maximum (14). For typical experimental
values, the contribution of the second maximum is always less than the contribution of the first
maximum. But at the same time, the energy of these h-phonons can greatly exceed the energy
of the h-phonons for the Bose-cone distribution. The ratio of these energies may reach the
suprathermal value of several tens (see equation (22)). So, phonon–phonon interactions result
in a large number of phonons with high momentum when the system is strongly anisotropic,
i.e. an increase in the density of h-phonons with anisotropy. In a previous paper this result
was obtained by an analysis of the creation and decay rates of h-phonons with the approximate
Bose-cone distribution function [4]. From the limiting equation (18), we see that strongly
anisotropic phonon systems with χ � 1 and low temperatures have a higher total energy
density than isotropic phonon systems at the same temperature (see figure 2).

Realizable anisotropic phonon systems must be thermodynamically stable. The general
thermodynamic inequality [19] that can be applied to superfluid helium determines the line
of stability u = ust(T ). We found the stability line for quasi-equilibrium systems of l- and
(l + h)-phonons (see figure 3). At T = 0 the maximum drift velocity coincides with the
Landau velocity (see equation (28)); hence, the curves u = ust(T ) can be considered as a
generalization of the critical Landau velocity of phonon systems at finite temperatures. For
temperatures up to T = 2 K the critical velocity remains close to c, so strongly anisotropic
phonon systems are stable up to high temperatures.

We have shown (see figure 4) that, for strongly anisotropic phonon systems, the normal
density ρn can be much higher than the normal density of isotropic phonons at the same
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temperature, but it remains small in comparison with the total density of helium, ρ. The
total energy density (figure 5) of extremely anisotropic phonon systems, at sufficiently low
temperatures, can be many orders greater than the energy density of the isotropic system at the
same temperature.

Finally, we note that there is an essential difference between anisotropic phonon systems
and anisotropic systems of classical particles. In the latter it is possible to transform the
anisotropy away, by making a Galilean transformation to a moving frame where the total
momentum of the system is zero. This is impossible for the anisotropic phonon system because
the energy–momentum dependence, ε(p), is only true in the frame in which the superfluid is at
rest: in a classical system the energy–momentum relation is the same in all inertial frames. So,
for phonon systems in superfluid helium, the anisotropy is absolute.
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